P Pearson Edexcel

Mark Scheme (Results)

November 2020

Pearson Edexcel GCSE In Physics (1PH0) Paper 2F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:www.pearson.com/uk

November 2020
Publications Code 1PHO_2F_2011_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.
Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.
When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1*	An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required	
AO2	An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)	
AO3	1a and $1 b$	An answer that combines points of interpretation/evaluation to provide a logical description	
AO3	2a and 2b		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	3a	An answer that combines the marking points to provide a logical description of the plan/method/experiment	
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning

*there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15%). These will be identified by an asterisk in the mark scheme.

Question number	Answer	Additional guidance	Mark
$\mathbf{1}$ ai			(1)
	A, B and D are incorrect because they are all closer to the surface		

Question number	Answer	Additional guidance	Mark
$\mathbf{1}$ aii	B. the same as the pressure on X A,C and D are incorrect because the pressure does not depend on surface area		(1)

Question number	Answer	Additional guidance	Mark
$\mathbf{1}$ bi	$6.5(1)$	metres / meters allow M independent marks	(2)

Question number	Answer	Additional guidance	Mark
$\mathbf{1}$ bii	the pressure increases		(1)

Question number	Answer	Additional guidance	Mark
$\mathbf{1}$ biii	there is additional pressure due to the atmosphere		(1)

Question number	Answer	Additional guidance	Mark
$\mathbf{1}$ c	Any two from: height of atmosphere (above aeroplane) (1)	less air above the aeroplane accept oxygen for air in this context	(2)
	density of atmosphere (1) the temperature (of the atmosphere) (1)	the air gets thinner the air gets colder	

Total for question 1 = 7 marks

Question number	Answer		Additional guidance	Mark
2 a	${ }^{+}$			
	part of plug	safety feature	Note that the tick next to cable grip is already in the grid more than two additional ticks deduct one mark for each incorrect tick.	(2)
	cable grip	(v)		
	earth wire	\checkmark		
	fuse	\checkmark		
	live wire			
	neutral wire			

Question number	Answer	Additional guidance	Mark
$\mathbf{2}$ bi	A an ammeter B, C and D are incorrect because they do not show current	(1)	

Question number	Answer	Additional guidance	Mark
2bii	substitution (1) $(Q)=2.5 \times 8(x 60)$ evaluation (1) 1200 (C)	(2) allow 20 (C) for 1 mark award full marks for the correct answer without working	

Question number	Answer	Additional guidance	Mark
2c	substitution (1)	$\frac{15 \times 3.1}{230}$	evaluation (1)
	0.20 (A)	allow any value that round to $0.20 ;$ e.g. 0.2022 award full marks for the correct answer without working	(2)

Total for question $2=7$ marks

Question number	Answer	Additional guidance	Mark
3ai	evaluation of gear ratio (1) $1: 3$	allow 1 mark if $60 / 20$ or 20/60 or 20:60 or 60:20 seen	(2)
	evaluation of number of revolutions (1)	award full marks for the correct answer without working	

Question number	Answer	Additional guidance	Mark
3aii	D 120mm down	A and C are incorrect because gear T moves down B is incorrect because gear T moves 2mm per tooth	

Question number	Answer	Additional guidance	Mark
$\mathbf{3}$ bi	substitution (1) (moment=) 0.40×70 evaluation (1) 28 Nm (1)	(3) independent mark award full marks for the correct answer without working	

Question number	Answer	Additional guidance	Mark
$\mathbf{3} \mathbf{\text { bii }}$	an explanation linking	allow reverse argument for load the effort is at a bigger distance (1) from fulcrum (than the load) (1)	(2) (magnitudes of) moments are the same
allow wheel/axle/pivot for fulcrum			

Question number	Answer	Additional guidance	Mark
$\mathbf{3}$ biii	(there will be more) friction (between the axle and wheel)	inside the bearing	(1)

Total for question 3 = 9 marks

Question number	Answer	Additional guidance	Mark
4ai	D		(1)
	A and B are incorrect because they only show one force C is incorrect because the forces are in the wrong direction		

Question number	Answer	Additional guidance	Mark
4 aii	substitution (1) evaluation (1) $20 \times(0.0) 7$ $1.4(\mathrm{~N})$	(2) award full marks for the correct answer without working allow 1 mark max for POT error	

Question number	Answer	Additional guidance	Mark
$\mathbf{4}$ bi	substitution (1)	(2)	
	$(\mathrm{E}=)^{1 / 2 \times 20 \times 0.09^{(2)}}$	allow 1 mark for $1 / 2 \times 20 \times 9^{2}$ or answer of $810(\mathrm{~J})$ or answer of $90(\mathrm{~J})$	evaluation (1) award full marks for the correct answer without working

Question number	Answer	Additional guidance	Mark
4 bii	a description including mention of one relevant energy store (1) correct transfer in context (1)	potential/ PE/ kinetic/ KE/ thermal/ heat/ elastic	(2)
		potential energy stored in the spring transferred to kinetic energy of the ball/rod scores 2 marks	kinetic energy of rod is transferred to kinetic energy of ball scores 2 marks

Question number	Answer	Additional guidance	Mark
4 biii	an explanation linking two from	ignore damaging the spring (given in stem) extension (1)	(2)
	idea of keeping below the elastic limit (1)	stretch	prevents spring being over-stretched / extended too far scores 2 marks

Question number	Answer	Additional guidance	Mark
5a	an explanation linking any tw o of steel is magnetic (material) (1)	steel attracted / sticks to / carried round by magnet/roller)	(2)
	aluminium is non-magnetic (material) (1)	is not attracted / does not stick (to magnet roller)	steel falls into container A / aluminium falls into container B (1)
steel cans are carried further round than aluminium and fall into A steel hangs on for longer / aluminium falls quicker			

Question number	Answer	Additional guidance	Mark	
$\mathbf{5}$ (bi)	S	N		allow
		s		
		or		

Question number	Answer	Additional guidance	Mark
$\mathbf{5 ~ (b i i) ~}$	an explanation linking two from (strength of magnetic) field /force (1) (depends on) distance from the magnet (1)	(magnets) attract / repel force / field is weaker when further away (from magnet) or reverse argument lines of force are further apart	(2)

Question number	Answer	Additional guidance	Mark
$\mathbf{5}$ (biii)	a description to include four from move brick towards the car (1)	(4) change distance between car and brick	
	until car (just) starts to move (1) car/magnet (1) repeat with 2 magnets (1) compare distances (for one magnet and for two magnets) (1)	measure how close car gets to the brick	
	detail about procedure (1)	how to attach second magnet(s)	

Total marks for Question 5 = 9 marks

Question number	Answer	Additional guidance	Mark		
$\mathbf{6 (a)}$	voltmeter should be moved (1)	voltmeter is in wrong place / (re)connect the voltmeter allow 'voltage' for	(2)		
'voltmeter' in this					
context					
allow across X or					
equivalent statement					
answers may be seen					
on the diagram				$~$	(to be) in parallel with the
:---					
resistor X (1)					

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (b i)}$	$0.9(\mathrm{v})$	0.90 ignore units ignore calculations	(1)

Question number	Answer	Additional guidance	Mark
6 (bii)	substitution (1) $R=\frac{2.1}{0.041}$ evaluation (1) $\mathrm{R}=51(.2)(\Omega)$ (which is approx. $50(\Omega)$)	allow $(V)=0.041 \times 50$ $\mathrm{V}=2.05(\mathrm{v})$ (which is approx. 2.1) allow $\mathrm{R}=51(.2)(\Omega)$ with no working for 2 marks	(2)

Question number	Answer	Additional guidance	Mark
$\mathbf{6}$ (biii)	recall and substitution (1)		(2)
	$(\mathrm{P})=2.1 \times 0.041$		
	evaluation (1)	allow any value that rounds to 0.086; e.g.	
		$0.0861(\mathrm{~W})$ $0.09(\mathrm{~W})$ award full marks for the correct answer without working allow POT error for 1 mark	

Question number	Answer	Additional guidance	Mark
$\mathbf{6}$ (biv)	recall that effective resistance = sum of individual resistances (1) (resistance =) $50+22$ evaluation (1) $72(\Omega)$	$51+22$	(2)
		$73(\Omega)$ award full marks for the correct answer without working	

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (b v)}$	substitution (1)		(2)
	(E =) $3.0 \times 0.041 \times 2(\times 60)$		accept values that round to 15; e.g. 14.76 award full marks for

Total marks for Question 6 = 11 marks

Question number	Answer	Additional guidance	Mark
$\mathbf{7 (a)}$	ac	(1)	
	B and D are incorrect because they are not normal to the surface A is incorrect because the force should act outwards		

Question number	Answer	Additional guidance	Mark
7(b)	$\begin{aligned} & \text { substitution (1) } \\ & \left(\mathrm{P}_{2}=\right) \frac{120 \times 2500}{1600} \\ & \text { evaluation (1) } \\ & 190(\mathrm{kPa}) \end{aligned}$	award full marks for the correct answer without working accept values that round to 190;	(2)

Question number	Answer	Additional guidance	Mark
$\mathbf{7 (c)}$	recall equation (1)	accept P = $\frac{\mathrm{F}}{\mathrm{A}}$	(3)
	pressure = force		
subsa			
(pressure =) $\frac{28}{2}$	ignore powers of ten errors for attempted unit conversions	award full marks for the correct answer without working	

Question number	I ndicative content	Mark
* 7 (d)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. - Gas particles are in (random) motion - Particles hit sides of container / each other - This produces (net) force on (sides of) container - This causes a pressure (on the container) - As volume increases the particles have more space to move - This means that particles hit sides less frequently - Smaller (net) force on sides of container - Pressure decreases. - Change in pressure (with increase in volume) is not linear - Pressure never becomes zero	(6)

Level	Mark	Descriptor
	0	Level 1
-	No rewardable material.	
Level 2	$3-4$	Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1)
-Presents an explanation with some structure and coherence. (AO1)		
Level 3Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1)		
-Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)		

Summary for guidance

Level	Mark	Additional Guidance	General additional guidance - the decision within levels e.g. - At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional guidance simple description of how pressure is caused or how it changes	Possible candidate responses Particles hit sides of container or Pressure becomes less as volume increases
Level 2	3-4	Additional guidance description of how pressure is caused and how it changes	Possible candidate responses Particles hit sides of container. This causes a (net) force on sides of container. Pressure becomes less as volume increases
Level 3	5-6	Additional guidance Description of how pressure is caused, and why it changes in the way shown	Possible candidate responses Particles hit sides of container. This causes a (net) force on sides of the container. As volume increases the particles hit the sides less frequently so the pressure becomes less.

Question 7 = 12 marks

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (a) (i)}$	an explanation linking any three of the following : use a measuring cylinder /beaker or use a eureka can /displacement can/container with spout (1)	give credit for other acceptable methods	(3)
	(partly) fill measuring cylinder /beaker (with water) note the reading or fill (eureka) can to spout (1)	immerse piece of copper (in water) (1)	note difference in readings of water level (in measuring cylinder /beaker) or collect water from spout in a measuring cylinder /beaker (1)

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (a) (i i)}$	recall and substitution (1) density $=\frac{\mathrm{m}}{\mathrm{V}}$		(2)
	(density=) $\frac{0.058}{6.5\left(\times 10^{-6}\right)}$	evaluation (1) $8.9 \times 10^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	accept values that round to 8900 e.g. $8923\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ or 9000

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (b) (i)}$	rearrangement (and substitution) (1) $(\mathrm{c})=\underline{1050}$ 0.058×78	$\mathrm{c}=\underline{\Delta \mathrm{Q}}$ $\mathrm{m} \times \Delta \theta$ award 1 mark if 78 seen	(2)
	evaluation (1) $230\left(\mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\right)$	accept 232(J/kg $\left.{ }^{\circ} \mathrm{C}\right)$	award full marks for correct answer without working.

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (b) (i i)}$	any two of the following	ignore more accurate measurements e.g. thermometer, balance etc. ignore taking repeats	(2)
	reduce heat loss from water/insulate beaker/add cover (1) make the temperature rise larger/use a larger piece of copper/ use a smaller amount of water (1) (use)a stirrer (1) account for heat gained by glass beaker (1) transfer the hot copper faster (1) use a different heating method (1) measure the temperature of the boiling water (1)	start with colder water	

Question number	Answer	Additional guidance	Mark
$\mathbf{8 ~ c ~}$	a description including two from: put the coil in the water (1) (electric) current in the wire/coil (1)	allow electricity for electric current	(2)
	thermal energy transferred (in the wire) (1)	heat(energy) in wire / temperature of wire increases/ produces heat/ gives energy/ to heat the water	

Total marks for question 8 = 11 marks

Question number	Answer	Additional guidance	Mark
$\mathbf{9}$ (a)	(upward) force increases with speed (1) relationship is non-linear (1)	allow reverse argument changing rate / increases exponentially/ initially no upward force (until 1000 turns per minute)	(2)

Question number	Answer	Additional guidance	Mark
9(bi)	recall and substitution into (1) gpe $=\mathrm{m} \times \mathrm{g} \times \mathrm{h}$	(2) evaluation (1) $900(\mathrm{~J})$	allow 90(J) for 1 mark
	award full marks for the correct answer without working		

Question number	Answer	Additional guidance	Mark
9bii	$900(\mathrm{~J})$	allow ecf from bi	(1)

Question number	Answer	Additional guidance	Mark
9biii	recall and substitution (1) power = work done / time taken	allow ecf from bi or bii	(2)
	power =) 900 / 4 evaluation (1) $200(W)$	230(W) 225(W) award full marks for the correct answer without working	

Question number	I ndicative content	Mark
*9(c)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.	(6)
	- Chemical energy stored in battery - Transferred to KE in motors - Transferred to GPE as it rises - Thermal energy wasted (at each stage) - Energy transferred to surroundings (at each stage)	

Level	Mark	Descriptor
	0	- No rewardable material.
Level 1	1-2	- Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) - Presents an explanation with some structure and coherence. (AO1)
Level 2	3-4	- Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) - Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	- Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) - Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

Summary for guidance

Level	Mark	Additional Guidance	General additional guidance - the decision within levels e.g. - At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
Level 1	1 1-2	Additional guidance Isolated fact e.g. a description of least one energy store or interpretation of diagram without mentioning energy stores or types	No rewardable material. Cossible candidate responses or energy transferred from the battery to ene energy is lost at each stage. the motors and then to the blades.
Level 2	$3-4$	Additional guidance Description of at least one energy transfer	$\underline{\text { Possible candidate responses }}$ KE (of blades) is transferred to GPE (as the drone rises) or (thermal) energy is transferred to the surroundings
Level 3	$5-6$	Additional guidance Description of two or more energy transfers	Possible candidate responses Chemical energy in the battery is transferred to KE of the blades AND Thermal energy is wasted in the motors when they turn.

Question 9 = 13 marks

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (a) (i)}$	rub (the balloon) (1) with a piece of cloth/hair/fur (1)	use friction allow on any insulated object	(2)

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0}$ $\mathbf{(a) (i i)}$	B Negative charge has been added to the balloon	A is incorrect removing negative charge would make the balloon positively charged. C and D are incorrect because positive charge cannot be moved	(1)

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (a) (\text { iii) }}$	an explanation linking: method of handling balloons without discharging them (1)	hang balloons up by their strings	(3)
	bring balloons near to each other (1)	observation of repulsion (1) they/balloons will push away (from each other)	

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0}$ (b)(i)	B		(1)
	A and D are incorrect because a negative charge cannot induce a negative charge C is incorrect because the disc is insulated so negative charge cannot be removed		

Question number	Answer	Additional guidance	Mark		
10 (b)(ii)	an explanation linking:	electrons / negative charges			
have flowed (1)					
from the metal disc / to the					
student / to earth/ground (1)				\quad	reject positive charge
:---					
moving for first mark	\(~\left(\begin{array}{l}(2) 				

\hline\end{array}\right.\)

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (b) (\text { iii) }}$	at least three straight lines joining disc and plastic (1) audge by eye ignore curved lines at edge plastic (1) from disc towards	(2) do not award mark if there are arrows in both directions	

